#p259278,Stalin vs написал(а):Повторяю вопрос. Где на съёмке берега за 108 км дальняя часть моря, сжатая в тонкую незначительную прямую линию, такую же как в аквариуме?
За волнением моря.
#p259278,Stalin vs написал(а):Это троллинг самого низкого пошиба. Ты сам прекрасно знаешь, что если вместо плоскости будет сфера, направление загиба луча никак не изменится. Он всё равно будет загибаться в сторону слоя с большей оптической плотностью. Нет причин у луча загибаться иначе.
Это не троллинг, а попытка вывести тебя на чистую воду, чтобы ты привел реальные доказательства волшебному изгибу луча по сфере атмосферы земли. Но полагаю их не будет.
#p259153,Stalin vs написал(а):Картинка отображает опытные данные, то есть реальность, только и всего. Все формулы, которые я использую проверены, работают подтверждаются наблюдениями.
Нет. Она ничего не отображает, кроме глобального вранья. Вот давай рассмотрим и сравним разницу в наблюдении на плоской земле и на шарообразной. И увидим очередную манипуляцию сознанием с рефракцией для шарообразной земли.
Наткнулся на одну интересную программу создающую панораму местности на любом расстоянии и в любой местности, которая подтверждается наблюдениями на основании каких-то расчетных формул шарообразной рефракции.
Панорама местности
Теперь предлагаю эту программу панораму местности сравнить с реальными наблюдениями. Забегая вперед, скажу, что она отлично с этим справляется. То есть вполне неплохой инструмент для создания любой панорамы местности без видеосъемки. Данные высот и длин не буду указывать, не имеет здесь значение, погрешность получается несущественной и при желании можно проверить по видео и из моих сообщений ( о.Мэн, Сицилия ) , где я показывал кривизну земли с расстоянием и высотами.
Возьмем панораму из уже рассматриваемого примера.
Плоская Земля? От Блэкпула до острова Мэн 65 миль: https://www.youtube.com/watch?v=Y8bXcpw … mp;index=3
Место съемки панорамы из программы:
Панорама из программы:
Теперь давай рассмотрим второй пример.
Мальта – 108 км – Рагуза (Сицилия). Как плоская поверхность может скрыть 500-метровый холм?: https://www.youtube.com/watch?v=kXleTc0PPaY
Место съемки панорамы из программы:
Панорама из программы:
Давай еще один пример из Новой Зеландии.
Nikon P1000: тест с мегазумом — метеостанция (57 км/35 миль): https://www.youtube.com/watch?v=kB3AeEgrz_Y
Место съемки панорамы из программы:
Панорама из программы:
Как видно из скриншотов. Панорама местности на камеру соответствует панораме местности программы, и не особо зависит от погодных условий. То есть ни температура, ни влажность, ни давление не влияют на рефракцию, и мы всегда наблюдаем одну и туже видимую высоту. Вот так рефракция.
Если мы считаем, что земля плоская, то необходимо объяснить отсутствие наблюдения нижней части объекта, которая скрыта ввиду более плотного воздуха внизу как из-за испарения над морем, так и из-за того, что с высотой плотность воздуха уменьшается и это вполне нормальное объяснение не требующая каких-либо доказательств. Хотя можно взять в качестве доказательства тот же туман. Чем выше плотность воздуха, тем хуже видимость. И это очевидно.
Но если мы считаем, что форма земли шарообразная, тогда отсутствие видимости нижней части объекта выглядят вполне естественными из-за так называемой «кривизны» земли. Однако в этом случае необходимо объяснить видимость объекта за линией горизонта, для этого используют явление преломление света при прохождении границы двух сред и называют это рефракцией, за счет изгиба луча по сфере атмосферы земли. А на панораме местности из программы достаточно поднять линию горизонта (горизонтальная линия 0) в соответствии с расчетом на основании каких-то «эмпирических» данных, в соответствии с которыми мы должны наблюдать видимую часть объекта (горы, возвышенности).
То есть по факту данная панорама, как и наблюдение на камеру, подходит как для объяснения плоской земли, так и для объяснения шарообразной. С той лишь разницей, что на ПЗ у нас из-за плохой видимости не наблюдается нижняя часть объекта. А на ШЗ мы объясняем отсутствие видимости нижней части тем, что объект скрылся за линией горизонта, а верх видим благодаря выдуманной рефракции, которая изгибает луч по сфере земли, и приподнимает изображение.
В связи с чем возникаем вопрос, а есть ли реальные подтверждения, повторяю, реальные, а не формулы и картинки, что луч света будет огибать атмосферу земли по сфере? Или это просто взяли явление преломление света и натянули на сферу земли? Полагаю, кроме формул и подобных картинок ничего предоставить не сможешь. Есть ли реальные основания утверждать, что можно увидеть, то что скрыто к примеру за стеной впереди стоящего дома, за счет изгибания луча за угол этого дома в виду большей плотности воздуха перед домом?
В приведенных примерах, явление рефракции небольшое в пределах 100 метров. Но вот есть более впечатляющий пример данного нОучного явления.
443 км | Finestrelles, Пиренеи – Пик Гаспар, Альпы:
Фотография панорамы местности:
Андорра
Место съемки панорамы из программы:
Панорама из программы:
Высота съемки вид с Pic de Finestrelles 2820 м., максимальное расстояние 443 км, максимальная высота гор – 4102 метра.
Из калькулятора кривизны имеем:
И того имеем до линии горизонта 5038-4102= 936 метров. То есть «официальное» явление рефракции приподняло изображение Альп на целый километр!!!
И если сравнить ПЗ и ШЗ то будет выглядеть так:
Ребята для официального объяснения даже нарисовали как будет проходить свет по ШЗ.
И мы должны верить, что рефракция способна приподнять изображение на 1000 метров, приводя в пример явление преломления света и натягивая его на сферическую форму Земли? Серьезно?
В то время как рефракция ТРИГОНОМЕТРИЧЕСКОГО НИВЕЛИРОВАНИЯ ПРИ КОРОТКИХ РАССТОЯНИЯХ:
К основным внешним факторам, влияющим на величину рефракции,
можно отнести следующие [4, 5]:
– структура и тип подстилающей поверхности;
– время года и суток;
– географическое положение района измерений;
– направление и скорость ветра;
– тип и балл облачности;
– наличие и вид осадков;
– турбулентные характеристики приземного слоя атмосферы.
Кроме того, величина рефракции зависит от высоты визирного луча над
подстилающей поверхностью, а также от его длины [6].
Из многочисленных исследований геодезического нивелирования
на малые (до 400 м) расстояния [1–10] можно сделать следующие основные
выводы:
– колебание коэффициента рефракции в течение дня достигает больших величин (от +3,0 до –4,4). Бóльшую часть дня коэффициент отрицательный, а в течение 1–2 ч после восхода и до захода Солнца – положительный. При этом наибольших значений по абсолютной величине коэффициент
80
достигает при восходе и заходе Солнца, а также в близполуденный период
(с 12 до 15 ч);
– ошибки измерения превышений, обусловленные рефракцией, больше
в ясную и тихую погоду, а в облачную уменьшаются лишь на 10–20 % [8].